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Abstract— Accurate mapping of force and position is crucial
for the management of tendon-driven surgical soft robot. We
introduce a neural network framework that maintains cycle
consistency, which incorporates an encoder-decoder based on
convolutional neural networks (CNN) for translating force to
position (measured in Newtons and meters) and a model based
on Kolmogorov-Arnold networks (KAN) for the inverse kine-
tostatic mapping from position to force. A combined training
approach, which includes distinct training phases followed by
joint fine-tuning with the incorporation of cycle consistency
loss, guarantees that closed-loop consistency is preserved. When
tested in a tendon-driven soft robotic data set, our model
demonstrates exceptional accuracy without load (forward mean
square error: 0.000148 m?; inverse mean squared error: 0.0098
N?) and maintains strong performance under load conditions
(forward mean squared error: 0.000337 m2; inverse mean
squared error: 0.0376 N?). The cycle consistency errors are
minimal (0.000217 m? without load, 0.000347 m? with load),
confirming the validity of the physical consistency. With predic-
tion durations between 0.15 and 0.25 ms per sample, this frame-
work supports real-time control, validated through closed-
loop experimental results (single-sample cycle error: 0.000217-
0.000346 m?). This method promotes enhanced precision and
resilient control for tendon-driven surgical soft robot across
varying load conditions.

Index Terms— Cycle Consistency, Force-Position Mapping,
Neural Networks, Tendon-Driven Surgical Soft Robot

I. INTRODUCTION

Tendon-driven robots, a subset of soft robotics, offer
exceptional flexibility and compliance, ideal for minimally
invasive surgery and the navigation of confined spaces
[1], [2]. Precise control relies on accurate force-to-position
mapping, where tendon forces determine end-effector posi-
tions, and inversely, positions guide force adjustments under
varying loads. In medical contexts, such mapping enhances
catheter robots in endovascular procedures, ensuring precise
navigation and stent delivery [3]. Challenges stem from non-
linear dynamics and external loads, demanding precision,
robustness, and real-time performance.

Traditional kinematic models struggle with computational
complexity and adaptability to dynamic settings [4], [5].
Neural network-based approaches excel in capturing non-
linearities, but often lack closed-loop consistency under
load variations [6]. Submillimeter precision and millisecond
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latency are critical for real-time control in surgical and
industrial uses.

We propose a cycle-consistent neural network frame-
work combining a CNN-based encoder-decoder for force-
to-position mapping with a KAN-based model for position-
to-force mapping. A hybrid training approach—separate
training and joint fine-tuning with cycle consistency
loss—ensures physical consistency across loads. In a tendon-
driven continuum robot dataset to simulate surgical sce-
narios, our model delivers high precision (forward MSE:
0.000148 m2 no load, 0.000337 m2 with load; inverse MSE:
0.0098 N? no-load, 0.0376 N2 with load) and low cycle
errors (0.000217-0.000346 m?), with prediction times of
0.15-0.25 ms/sample, enabling real-time control.

Fig. [T] shows the robot driven by tendons, Fig. [2] shows
the network architecture, and Fig. [3] compares the perfor-
mance metrics. This paper explores the implications for the
implications for the methodolcontrol.control.
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Fig. 1. Tendon-driven continuum robot used in experiments.

II. METHODOLOGY AND RESULTS

We propose a cycle-consistent neural network framework
for force-position mapping in tendon-driven surgical soft
robot, as shown in Fig. |ZI The forward model, a CNN-based
encoder-decoder, maps 7-dimensional inputs (six tendon
forces and one payload weight) to 6-dimensional positions
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Fig. 2.

using convolutional layers and attention. The inverse model,
a KAN-based network, performs the kinetostatic mapping
from positions to forces with two KAN layers and resid-
val connections for non-negative forces. A mixed training
strategy—separate training (300 epochs each) and joint fine-
tuning (200 epochs) with Adam optimization—is employed.
Losses include MSE with distance penalties (forward), non-
negative penalties (inverse), and cycle consistency:
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where Yrecovered = f forward(f inverse (ytrue))
Evaluated on a dataset (80% training, 20% testing, Min-

MaxScaler), the model achieves high precision without load
(forward MSE: 0.000148 m?; inverse MSE: 0.0098 NZ2;
cycle error: 0.000217 m2) and robust performance with load
(forward MSE: 0.000337 m?; inverse MSE: 0.0376 N?; cycle
error: 0.000347 m?), as shown in Fig. Prediction times
(0.15-0.25 ms/sample) support real-time control.
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Fig. 3. Performance metrics for tendon-driven Surgical Soft Robot.

III. CONCLUSION

This research introduces a framework based on a cycle-
consistent neural network aimed at accurately mapping force
to position in tendon-driven surgical soft robot, achieving
both high precision and real-time control. The framework
incorporates a CNN-based forward model alongside a KAN-
based inverse model for kinetostatic mapping, ensuring
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closed-loop consistency through a hybrid training approach.
Experimental findings reveal strong performance, evidenced
by forward mean squared errors (MSEs) of 0.000148 m?
under no-load conditions and 0.000337 m? under load, as
well as inverse MSEs of 0.0098 N2 and 0.0376 N2, with
cycle errors ranging from 0.000217 to 0.000347 m?2. The
model demonstrates prediction times between 0.15 and 0.25
ms per sample, supporting its application in fields such as
surgery and navigation.

Nonetheless, the presence of load-induced errors in the
inverse kinetostatic model indicates the need for future
efforts to improve adaptability to dynamic environments and
multi-robot systems.
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