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Abstract— Tendon-driven continuum robots (TDCRs) with
hyper-redundant DOFs are widely developed for sophisticated
tasks such as minimally invasive surgery. However, the static
modeling of the TDCREs is challenging due to the nonlinear char-
acteristics of the TDCRSs’ structures and material properties. To
tackle the above-mentioned challenges, we develop a novel end-
to-end deep learning approach called geometric-aware attention
network (GAANet) by combining neural network architec-
ture and domain-specific geometric constraints. To acquire
the datasets and evaluate the applicability of our developed
network, we built up a two-segment TDCR with variable
cross-sections, which is equipped with load cells and a motion
capture system to measure the tension of tendons and the tip
position of each segment simultaneously. To prove the efficacy
of the developed GAANet, a multilayer perceptron (MLP)
trained with the same dataset and model-based approach called
pseudo rigid body model (PRBM) are both implemented for
comparison. The results show that the developed GAANet
outperforms the MLP and PRBM by 70.33% and 73.36%
respectively in terms of the tip position prediction accuracy of
each segment, demonstrating its potential for precise and real-
time static modeling for our developed TDCRs with variable
cross-sections.

Index Terms— Tendon-driven continuum robots, static mod-
eling, deep learning.

I. INTRODUCTION

Tendon-driven continuum robots (TDCRs) inspired by
invertebrates are widely researched in the field of robotics.
The static modeling of TDCRs poses significant challenges
due to the nonlinearities (e.g., non-constant cross-sections,
friction, and anisotropic material properties) inside the TD-
CRs’ structures and actuation mechanisms [1]-[3]. Conven-
tional model-based approaches relying on certain simplified
assumptions might lead to modeling inaccuracy [4]. How-
ever, data-driven approaches such as neural networks offer
a promising alternative by learning complex and nonlinear
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relationships between the actuation strength and TDCRs’
shapes or tip positions [5]-[10].

Recently, physics-based learning models that include phys-
ical constraints and physical constitutive equations in the
neural network have been widely studied in the modeling
and control of robotics [11]. Also, the physics-based learn-
ing model can be more interpretable and robust than the
traditional black-box models such as convolutional neural
networks [12]. Moreover, compared to black-box models,
physics-based learning models enhance generalization and
can be trained effectively even with limited data. Therefore,
this work introduces the development of a novel end-to-
end approach for static modeling of TDCRs using a neural
network that combines an encoder-decoder framework with
a self-weighted attention mechanism. Inspired by [13] and
[14], the developed architecture of the neural network maps
the relationship between tendon tension and tip position
of each segment of the TDCR while enhancing feature
extraction through attention. Geometric constraints reflect-
ing the TDCR’s physical properties are embedded in the
loss function to ensure physical feasibility and guide neu-
ral network optimization. The developed network is called
geometric-aware attention network (GAANet), and its effi-
cacy is demonstrated through comparisons with a multilayer
perceptron (MLP) trained on the same dataset and a model-
based approach called pseudo-rigid body model (PRBM)
developed in [15].

The main contributions of this work are listed below:

o To effectively learn the mapping between the tendon
tension and tip position of TDCR’s each segment,
an encoder-decoder architecture with a self-weighted
attention mechanism is developed to map the tension-
position relationship.

o Geometric constraints are embedded as penalty terms
in the final loss function to guide the neural network’s
optimization direction, ensuring that the learned trans-
formations fulfil the physical constraints of the TDCR
system. The weights corresponding to each constraint
are adjusted adaptively, enhancing the model’s adapt-
ability during different training stages.

The remaining part of the paper is organized as follows: In
Section II, a generalized forward static model of the TDCR is
formulated. In Section III, the design of the TDCR platform
with variable cross-sections is demonstrated, and the data ac-
quisition procedures are described. Section IV elucidates the
development of the neural network embedded with physical
constraints. Experimental results and discussion are shown



and offered in Section V. Section VI concludes this paper
and gives the future directions.

II. FORMULATION OF THE STATIC MODELING OF TDCRS

This paper aims to develop a physics-embedded learning
model for the static modeling of the TDCR. The forward
static model of the TDCR can be represented by (T), which
maps the relation between the tension of the actuated tendons
and the state of the TDCR along the backbone.

u=f(T) )

where u € R3" represents the n state of the TDCR, f is the
generalized forward static model of the TDCR, and 7' € R™
is a vector that contains the tension of m tendons. This work
mainly focuses on the forward static modeling of the TDCR
to prove the effectiveness of our developed physics-based
learning model. In this study, we simplify the representation
of w and define u = [u,, ug], which represents only the tip
position of the proximal segment and the distal segment of
our developed TDCR, respectively, in the Cartesian space.

III. HARDWARE SETUP AND DATA ACQUISITION

In this section, the hardware setup and data acquisition
workflow are described in detail.
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Fig. 1. Detailed View of Developed TDCR Mechatronic System.

As shown in Fig. [I] and [2a] we developed a two-segment
TDCR with variable cross-sections (the diameters of the

backbone vary from 4 mm to 12 mm in each subsegment),
which is challenging in terms of static modeling since it is
hard to model this kind of TDCR with the traditional model-
based approach (e.g., Cosserat rod theory). The proximal
segment and distal segment of the TDCR were separately
fabricated by a 3D printer (Bambu Lab, X1C, Shenzhen,
China) using TPU (Thermoplastic polyurethane) 95A fila-
ment. The length of each segment is 135 mm and the total
length of the TDCR is 270 mm. And the length of the
proximal segment is denoted by L, whereas the length of
the distal segment is represented by L, as seen in Fig. 2a]
The deformation of the two-segment TDCR is controlled by
the displacements of six tendons. The tendons that we utilize
in this TDCR are braid fishing lines (Spectra, PowerPro
Inc., Irvine, CA, United States). As shown in Fig. |I| and
[a] each segment is driven by three tendons respectively,
which are evenly spaced at 120° intervals on the disks and
knotted from the end disks of each segment to the individual
spools actuated by DC motors (EC-max 22, Maxon Motors
Inc., Switzerland). Meanwhile, to measure the tension of the
driving tendons in real-time, load cells (FSSM, Forsentek
Co., Ltd, Shenzhen, China) are integrated into the tendon
actuation modules.

To measure the tip position of each segment of TDCR
simultaneously, this mechatronic system shown in Fig. [2b] is
equipped with a real-time 3D motion capture system con-
taining four cameras (Flex13, NaturalPoint, Inc., Corvallis,
United States) that enables the position tracking of the TDCR
at the rate of 120 Hz with the accuracy of £0.2 mm. Note
that the extensibility and compressibility of our fabricated
TDCR are ignored due to the limited range of the actuated
tendon tension (from 0 N to 4.9 N) and the relatively high
infill density of the 3D-printed TDCR structure.

To construct the datasets for our proposed neural network
and ensure that the datasets include diverse configurations of
the TDCR, the TDCR was then deformed into different C-
shapes and S-shapes in the quasi-static state by commanding
six DC motors to pull or release the tendons (each shape
represents one trial). Meanwhile, the tendons’ tension was
measured by load cells and the tip position of each segment
of TDCR was collected by the 3D motion capture system.
Both types of data were recorded simultaneously at a fixed
frequency of 120 Hz during one trial and the number of the
collected data points on each trial was equal. To validate the
developed method for TDCR with different load conditions,
we installed different standard weights randomly (5 g, 10 g,
20 g and 50 g respectively) as the payload at the end tip of
the TDCR. To obtain the training and validation datasets, 24
trials were conducted without payloads, and 26 trials were
conducted under payloads.

IV. DESIGN OF NEURAL NETWORK

In this section, we describe the details of our developed
neural network architecture and the MLP. For the neural
network training, the tension of the six tendons is the input,
and the tip positions of each segment of the TDCR are
the output. A total of 3465 samples were collected without
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Fig. 2. Two-segment TDCR Platform. (a) TDCR with variable cross-section
(The proximal segment is highlighted in blue while the distal segment is
highlighted in green); (b) snapshot of the complete mechatronic system
setup of our developed TDCR (including the motion capture system).

payloads, and 6052 samples were collected with payloads
from the 24 and 26 trials respectively. The dataset was
randomly divided into training, validation, and test sets using
an 80%—20% split. Specifically, 80% of the data was used
for training, and 10% of the training data was randomly
set for validation. The remaining 20% was used as the test
set. The training dataset includes both the samples with
and without payloads. All computation was performed on
a desktop computer equipped with an Intel(R) Core(TM) i7-
14700F CPU with 2.10 GHz clock speed and an NVIDIA

RTX 3060 Ti GPU. The programming environment includes
Python 3.8, with TensorFlow 2.10.

A. Multilayer Perceptron

Multilayer perception (MLP), as illustrated in Fig. [3d] is
a feedforward neural network consisting of an input layer,
three hidden layers, and an output layer [16]. Neurons con-
nect via weighted connections, allowing the network to learn
complex patterns using backpropagation and gradient descent
as demonstrated in equation (Z). And MLP is commonly
used in the modeling and control of continuum robots (CRs)
[4]. A pioneering work that utilized MLP as a feedforward
compensator in the control of the CRs is [17], which opened
a new direction for using neural networks in the modeling
and control of the CRs. In this work, MLP is implemented
and compared with our developed neural network.

(T

af) =o( 30 wideg™ V- 0) @)
=1

The notations of (2) are listed as follows:

a,gL) is the output of the k-th neuron in the L-th layer
after applying the ReLU function.

. wéi) is the weight from the j-th neuron in the (L —1)-th
la&erlto the k-th neuron in the L-th layer.

a'F™V s the activation of the j-th neuron in the
previous layer.

. b,(CL) is the bias for the k-th neuron in the L-th layer.

o o is the activation function applied to z,(cL), defined as
ReLU(z) = max(0, x).

B. Geometric-aware Attention Network

The proposed architecture, as shown in Fig. 3b] maps
tendon tensions 7' to tip positions z, transforming high-
dimensional input data into a latent space for effective
feature extraction. This neural network architecture adopts
an encoder-decoder structure, where both the encoder and
decoder primarily consist of convolutional layers. A self-
weight attention mechanism is introduced in the latent space
to further optimize feature extraction.

The encoder comprises multiple convolutional layers, each
incorporating convolution operations, batch normalization,
ReLU activation, and dropout (with a rate of 0.1) to prevent
overfitting. The convolution kernel size is 1x2, allowing the
network to capture local dependencies within the tension
data. After each convolutional layer, max-pooling is applied
to reduce the spatial dimensions of the data, thereby decreas-
ing computational complexity.

Following the encoder, a self-weight attention mechanism
is introduced to emphasize features that are critical for tip
position prediction, especially in the context of TDCRs. In
TDCRs, the relationship between tendon tensions and the
tip positions is highly nonlinear and affected by complex
factors such as the TDCR’s geometry, non-homogeneous
material properties and tendon routing patterns. The attention
mechanism is designed to focus on the most relevant features
of this high-dimensional input data, helping the model to
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Fig. 3. Architecture of the two neural networks applied for the static
modeling of the TDCR. (a) multilayer perceptron (MLP); (b) geometric-
aware attention network (GAANet)

better capture the intricate dependencies between tendon
tension and tip positions.

The attention mechanism works by assigning different
weights to the input features based on their relevance to
the tip positions prediction task. In mathematical terms,
given a set of features, the attention mechanism computes
a weight for each feature by comparing it to other features
using a query (Q), key (K), and value (V) representation.
The output of this mechanism is a weighted combination
of the features, where features with higher relevance to the
predicted positions receive higher attention. This mechanism
helps the model to focus on key aspects of the input, such
as tendon tensions that have a more direct effect on the tip
positions, while less relevant information is down-weighted.

The equation governing the attention mechanism is given

as:
T

Attention(Q, K, V') = softmax (QK

i

where @), K, and V represent the query, key, and value
vectors, respectively, and dy, is a scaling factor. The inclusion
of this self-weight attention mechanism is crucial for improv-
ing the model’s ability to learn the most relevant features,
enabling it to map complex tendon tensions to accurate tip
positions by highlighting the most informative parts of the

) 14 3)

input data.

After the attention mechanism, the decoder module pro-
gressively decodes the latent features back into the output
space using a series of transposed convolutional layers.
These layers aim to restore the dimensionality of the data,
converting it into a representation closer to the end position
of the TDCR. The decoder is structured symmetrically to the
encoder, ensuring that the relevant features learned through
attention are effectively utilized in the final position predic-
tions. The features are then flattened and passed through a
fully connected layer, which produces the final output—the
predicted tip position of each segment. The GAANet model

Algorithm 1 Custom Loss Function with Improved Dynamic
Penalties
1: Input: Initial weights (wy,ws,ws), decay rate ¢, in-
crease factor «, threshold 7, true values ye, predicted
values Ypreq, €poch e
2: Output: Total 10sS Liota1, MSE 108S Linge
Initialize current weights as current_weights <
(w1, w2, w3)

(95}

4
5. Function update_weights(e, L)

6: for : =1 to 3 do

7. current_weights[i] <+ current_weights[i] - e=%¢
8: end for

9: if Ly > 7 then

10: fori=1to 3 do

11: current_weights[i] < current_weightsli] - «
12:  end for

13: end if

14: End Function

16: Function call(Uyue, Upred)

17: Lipge 4 %Z (ulrue,i - upred,i)2

18: pos; < Uy

19: poss < Ua

20: distance < ||posy — posa||

21: distancel < ||posi ||

22: distance2 < ||poss||

23: distance_penalty <+ + 3" max(0, distance — Lg)?

24: distance_penaltyl < L > max(0, distancel — L,)

25: distance_penalty2 <+ % >~ max(0, distance2 — (L, +
La))?

26: Ltotal — Lmse +
distance_penalty +
distance_penaltyl +
distance_penalty?2

27: return (Lo, Linse)

28: End Function

2

current_weights[0]
current_weights[1]
current_weights|2]

is trained with the Adam optimizer, using a learning rate of
1x10~* to balance convergence speed and stability. Training
is conducted over 200 epochs, with a mini-batch size of
28 samples, to ensure proper model convergence. Based on
the assumption that the compression and extension of our
developed TDCR are ignored, the overall loss function L is



defined as a combination of the Mean Squared Error (MSE)
and three geometric penalty terms, as shown in (4).

L =MSE + w Py + wo Py + w3 P @)

where MSE = %Z?zl (Wgrue,s — upredyi)Q. Also, Py repre-
sents the first geometric penalty term, which enforces a con-
straint on the predicted distances between the tip positions
of two segments, defined in @) below.

1 n i i 2
p = EZmax (0, ||ug) —ué)H —Ld> %)
i=1

Moreover, P, denotes the second geometric penalty term
related to the total length of the developed TDCR, defined
by (6) below.

1 & ) 2
P Do (0 (o £))©

Finally, Ps denotes the third geometric penalty term related
to the tip position of the first segment, defined by (7) below.

o= > max (0 - (2) @)
i=1

To better determine the weighting factors for different con-
straints, the algorithm shown in Algorithm implements
a custom dynamic weighted loss function for a dataset with
weights. It adjusts the weights of the loss components based
on the Mean Squared Error (MSE) and applies geometric
penalties related to the distances of predicted values. The
current weights decay over epochs and are scaled up if
the MSE exceeds a predefined threshold. The total loss
is calculated by combining the MSE with penalties that
enforce geometric constraints on the predicted positions,
ensuring better model performance by adaptively tuning the
contributions of each penalty based on the learning progress.

V. RESULTS AND DISCUSSION

In this section, the results of GAANet, MLP, and PRBM
are demonstrated and discussed in detail. The general eval-
uation criteria of different approaches are the average tip
position error with respect to the total length of TDCR. To
begin with, the implementation of the PRBM necessitates a
calibration for the material parameters of the model, such
as Young’s modulus E, shear modulus G, the backbone
radius r, and also the mass of each disk m. Therefore,
the calibration was conducted with MATLAB 2024b using
the genetic algorithm (GA) with 24 randomly selected data
points collected from the 24 trials without the payload.
Furthermore, the results of PRBM were also evaluated in
MATLAB with the same validation datasets of MLP and
GAANet.

Regarding the average tip position prediction accuracy
evaluated from all the validation datasets covering 9517
samples in total, the PRBM achieved 7.12+3.83 mm (2.74+
1.47% of the total length of TDCR), the MLP achieved
6.40+7.70 mm (2.46+2.96% of the total length of TDCR),
whereas the GAANet reached 1.90+4.49 mm (0.73+1.73%
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Fig. 4. Box plots comparison of tip position errors over the different
validation datasets. (a) TDCR without payload (b) TDCR under different
payloads.

of the total length of TDCR). In terms of the tip position
prediction accuracy of each segment, it can be observed
from the results that the developed GAANet outperforms
the MLP and PRBM by 70.33% and 73.36% respectively.
Also, the average computation time from tension input to
the output of tip positions of PRBM, MLP, and GAANet
is 711.20 ms, 0.072 ms, and 0.460 ms, respectively. The
resulting tip position errors with or without the payloads are
demonstrated in Fig. 4 and the statistical results are listed
in Table [, which both indicate that the GAANet is more
accurate for predicting the tip position of each segment of the
TDCR with or without payloads than PRBM and MLP. The
GAANet outperforms the MLP in terms of tip position errors
due to its advanced feature extraction capabilities through
an encoder-decoder architecture and self-weight attention
mechanism. Moreover, the inclusion of geometric constraints
in GAANet’s loss function ensures physical feasibility in the
optimization process to have more accurate and stable results.



In summary, the MLP’s more straightforward structure and
lack of attention mechanism and physical constraints result
in higher variance and imprecise predictions, as shown in
Fig. A and Fig. @b] However, the computation efficiency of
the MLP is higher than the developed GAANet due to its
less complex network architecture. Nonetheless, our current
validation is limited to our developed TDCR with a specific
geometry and certain tendon routing pattern. We will further
evaluate our developed model on different TDCRs to further
prove its applicability in the future.

In this study, we conducted ablation experiments on a
dataset with payloads to evaluate the impact of different
conditions on model performance. Specifically, we examined
four scenarios: using both the attention mechanism and
geometric constraints, using only the attention mechanism,
using only geometric constraints, and using neither. The
results, as shown in Table [l and Table indicate that
the combination of the attention mechanism and geometric
constraints significantly improves the model’s mean squared
error (MSE) and mean absolute error (MAE). The reported
MSE and MAE values, measured in millimetres (mm),
indicate that the model achieves high precision in predicting
the tip positions of the TDCR. The improvement in MSE
and MAE with the inclusion of the attention mechanism and
geometric constraints highlights the model’s ability to deliver
highly accurate predictions, which is essential for the reliable
operation of TDCRs. Removing either mechanism leads to
a performance drop, further emphasizing the critical role of
the synergistic effect between the attention mechanism and
geometric constraints in enhancing the prediction accuracy
of static modeling.

In summary, our findings indicate that the proposed atten-
tion mechanism, combined with geometric constraints in the
loss function, can effectively enhance the prediction accuracy
of our developed GAANet.

TABLE I
ERROR STATISTICS OF VALIDATION

24 Trials without Payloads 24 Trials without Payloads
DS? Tip | mean| Std PST Tip | mean| Std
Error(%) Dev Error(%) Dev
PRBM® | 3.54 | 097 PRBM® | 1.89 | 0.71
MLP? 3.92 | 4.44 MLP* 1.01 | 075
GAANet’| 035 | 0.34 GAANet’| 0.52 | 1.20

26 Trials with Payloads 26 Trials with Payloads
DS Tip | mean| Std PST Tip | mean| Std
Error(%) Dev Error(%) Dev
PRBM? 352 | 1.89 PRBM? 1.98 | 0.65
MLP? 371 | 2.98 MLP?* 121 | 1.23
GAANet 1.03 | 2.24 GAANet® | 0.77 | 1.81

! PS represents the proximal segment.

2 DS represents the distal segment.

3 PRBM represents the pseudo-rigid-body-model.

4 MLP represents the multilayer perceptron.

5 GAANet represents the geometric-aware attention network.

VI. CONCLUSION

Physics-based learning models have become a new trend
in the modeling and control of CRs due to their higher

TABLE I
ABLATION EXPERIMENT RESULTS FOR NO PAYLOAD DATASET

Condition MSE(mm) MAE(mm)

With Attention & Geometric

Constraints 1.033 x 1071 2.743

Without Attention & Geometric

Constraints 1.050 x 10~1 2.881

With Attention & Without

Geometric Constraints 1.112 x 10~1 2.625

Without Attention & Geometric

Constraints 1.194 x 1071 2.933
TABLE III

ABLATION EXPERIMENT RESULTS FOR PAYLOAD DATASET

Condition MSE(mm) MAE(mm)
With Attention & Geometric

Constraints 3.371 x 1071 5.537
Without Attention & Geometric

Constraints 3.394 x 1071 5.813
With Attention & Without

Geometric Constraints 3.706 x 10~1 6.870
Without Attention & Geometric

Constraints 4.074 x 1071 8.004

accuracy and robustness. In this work, we developed a novel
neural network for static modeling of TDCR with complex
cross-sections, which achieves higher precision compared to
the model-based approach PRBM and data-driven approach
MLP. The results show that the proposed method: 1) can
predict the tip position of each segment merely based on
tension inputs of the TDCR; 2) has a higher modeling
accuracy compared to the selected analytic model PRBM
and conventional data-driven approach MLP. It is important
to note that the current GAANet design does not consider
dynamic characteristics, such as hysteresis effects, which
could influence the model’s accuracy in dynamic scenarios
where past configurations influence the current state. The
quality of the dataset can contribute to network errors, as the
raw data used in this study does not include data in dynamic
motion cases during data collection.

Furthermore, the network that we developed can be gen-
eralized to different TDCRs and we will first evaluate our
developed GAANet on different TDCRs in the future. Subse-
quently, efforts will be directed toward combining recurrent
neural networks (RNN) and our developed GAANet to cope
with the time series datasets and extend the applicability of
the GAANet in the dynamic modeling of the TDCREs.
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